Pathogens (Jun 2023)
Oral Epithelial Cells Expressing Low or Undetectable Levels of Human Angiotensin-Converting Enzyme 2 Are Susceptible to SARS-CoV-2 Virus Infection In Vitro
Abstract
The oral cavity is thought to be one of the portals for SARS-CoV-2 entry, although there is limited evidence of active oral infection by SARS-CoV-2 viruses. We assessed the capacity of SARS-CoV-2 to infect and replicate in oral epithelial cells. Oral gingival epithelial cells (hTERT TIGKs), salivary gland epithelial cells (A-253), and oral buccal epithelial cells (TR146), which occupy different regions of the oral cavity, were challenged with replication-competent SARS-CoV-2 viruses and with pseudo-typed viruses expressing SARS-CoV-2 spike proteins. All oral epithelial cells expressing undetectable or low levels of human angiotensin-converting enzyme 2 (hACE2) but high levels of the alternative receptor CD147 were susceptible to SARS-CoV-2 infection. Distinct viral dynamics were seen in hTERT TIGKs compared to A-253 and TR146 cells. For example, levels of viral transcripts were sustained in hTERT TIGKs but were significantly decreased in A-253 and TR146 cells on day 3 after infection. Analysis of oral epithelial cells infected by replication-competent SARS-CoV-2 viruses expressing GFP showed that the GFP signal and SARS-CoV-2 mRNAs were not evenly distributed. Furthermore, we found cumulative SARS-CoV-2 RNAs from released viruses in the media from oral epithelial cells on day 1 and day 2 after infection, indicating productive viral infection. Taken together, our results demonstrated that oral epithelial cells were susceptible to SARS-CoV-2 viruses despite low or undetectable levels of hACE2, suggesting that alternative receptors contribute to SARS-CoV-2 infection and may be considered for the development of future vaccines and therapeutics.
Keywords