PLoS ONE (Jan 2015)

Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways.

  • Zhao Zeng,
  • Tiandong Leng,
  • Xuechao Feng,
  • Huawei Sun,
  • Koichi Inoue,
  • Li Zhu,
  • Zhi-Gang Xiong

DOI
https://doi.org/10.1371/journal.pone.0119912
Journal volume & issue
Vol. 10, no. 3
p. e0119912

Abstract

Read online

Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel, is highly expressed expressed in the brain and plays a critical role in ischemic neuronal death. Astrocyte, the most abundant cell type in central nervous system (CNS), exerts many essential functions in the physiological and pathological conditions. Here we investigated the expression and functions of the TRPM7 channel in mouse cortical astrocytes. Using reverse transcription (RT)-PCR, immunostaining, western blot and patch clamp recording, we showed that functional TRPM7 channel is expressed in cultured mouse cortical astrocytes. Knocking down TRPM7 with specific siRNA impairs the proliferation and migration of astrocytes by 40.2% ± 3.9% and 40.1% ± 11.5%, respectively. Consistently, inhibition of TRPM7 with 2-aminoethoxydiphenyl borate (2-APB) also decreases astrocyte proliferation and migration by 46.1% ± 2.5% and 64.2% ± 2.4%. MAPKs and Akt signaling pathways have been shown to be implicated in TRPM7-mediated responses including cell proliferation and migration. Our data show that suppression of TRPM7 in astrocytes reduces the phosphorylation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not p38 mitogen-activated protein kinase and Akt. In addition, TRPM7, as a cation channel, has been involved in the Ca²⁺ and Mg²⁺ homeostasis in several types of cells. In our study, we found that silencing TRPM7 decreases the intracellular basal Mg²⁺ concentration without affecting Ca²⁺ concentration in astrocytes. However, an addition of Mg²⁺ to the growth medium could not rescue the impaired proliferation of astrocytes. Together, our data suggest that TRPM7 channel may play a critical role in the proliferation and migration of astrocytes via the ERK and JNK pathways.