Molecules (Mar 2021)

Dopamine Self-Polymerization as a Simple and Powerful Tool to Modulate the Viscoelastic Mechanical Properties of Peptide-Based Gels

  • Galit Fichman,
  • Joel P. Schneider

DOI
https://doi.org/10.3390/molecules26051363
Journal volume & issue
Vol. 26, no. 5
p. 1363

Abstract

Read online

Dopamine is a small versatile molecule used for various biotechnological and biomedical applications. This neurotransmitter, in addition to its biological role, can undergo oxidative self-polymerization to yield polydopamine, a robust universal coating material. Herein, we harness dopamine self-polymerization to modulate the viscoelastic mechanical properties of peptide-based gels, expanding their ever-growing application potential. By combining rapid peptide assembly with slower dopamine auto-polymerization, a double network gel is formed, where the fibrillar peptide gel network serves as a scaffold for polydopamine deposition, allowing polydopamine to interpenetrate the gel network as well as establishing crosslinks within the matrix. We have shown that triggering the assembly of a lysine-rich peptide gelator in the presence of dopamine can increase the mechanical rigidity of the resultant gel by a factor of 90 in some cases, while retaining the gel’s shear thin-recovery behavior. We further investigate how factors such as polymerization time, dopamine concentration and peptide concentration alter the mechanical properties of the resultant gel. The hybrid peptide–dopamine gel systems were characterized using rheological measurements, circular dichroism spectroscopy and transmission electron microscopy. Overall, triggering peptide gelation in the presence of dopamine represents a simple yet powerful approach to modulate the viscoelastic mechanical properties of peptide-based gels.

Keywords