Immunological Medicine (Apr 2019)
Analysis of the mechanism underlying liver diseases using human induced pluripotent stem cells
Abstract
Results of recent studies have shown that disease models using human induced pluripotent stem (iPS) cells have recapitulated the pathophysiology of genetic liver diseases, viral hepatitis and hepatic fibrosis. The utilization of human iPS cells as a model of liver diseases has several substantial advantages compared with primary hepatocytes and cancer cell lines, such as the potential for unlimited expansion and similarity of biological characteristics to normal liver cells. In this review, we have focused on modeling liver diseases using human iPS cells and discussed the experimental evidence that supports the utility of such disease models, including that in our recent studies. Genetically modified or patient-derived human iPS cells can mimic congenital liver disease phenotypes. Human iPS-derived hepatic cells can be infected with the hepatitis viruses. The co-culture of human iPS-derived hepatocytes and mesenchyme partially mimics the process of liver fibrosis. Human iPS cell-derived hepatic cells and the co-culture system of such cells will contribute to the progress of studies on the pathophysiology of genetic and non-genetic liver diseases and development of novel therapeutic strategies for treating liver diseases.
Keywords