Energies (Aug 2024)

Modeling, Design, and Optimization of Loop Heat Pipes

  • Yihang Zhao,
  • Mingshan Wei,
  • Dan Dan

DOI
https://doi.org/10.3390/en17163971
Journal volume & issue
Vol. 17, no. 16
p. 3971

Abstract

Read online

Thermal management technology based on loop heat pipes (LHPs) has broad application prospects in heat transfer control for aerospace and new energy vehicles. LHPs offer excellent heat transfer performance, reliability, and flexibility, making them suitable for high-heat flux density, high-power heat dissipation, and complex thermal management scenarios. However, due to limitations in heat source temperature and heat transfer power range, LHP-based thermal management systems still face challenges, especially in thermohydraulic modeling, component design, and optimization. Steady-state models improve computational efficiency and accuracy, while transient models capture dynamic behavior under various conditions, aiding performance evaluation during start-up and non-steady-state scenarios. Designs for single/multi-evaporators, compensation chambers, and wick materials are also reviewed. Single-evaporator designs offer compact and efficient start-up, while multi-evaporator designs handle complex thermal environments with multiple heat sources. Innovations in wick materials, such as porous metals, composites, and 3D printing, enhance capillary driving force and heat transfer performance. A comprehensive summary of working fluid selection criteria is conducted, and the effects of selecting organic, inorganic, and nanofluid working fluids on the performance of LHPs are evaluated. The selection process should consider thermodynamic properties, safety, and environmental friendliness to ensure optimal performance. Additionally, the mechanism and optimization methods of the start-up behavior, temperature oscillation, and non-condensable gas on the operating characteristics of LHPs were summarized. Optimizing vapor/liquid distribution, heat load, and sink temperature enhances start-up efficiency and minimizes temperature overshoot. Improved capillary structures and working fluids reduce temperature oscillations. Addressing non-condensable gases with materials like titanium and thermoelectric coolers ensures long-term stability and reliability. This review comprehensively discusses the development trends and prospects of LHP technology, aiming to guide the design and optimization of LHP.

Keywords