Antioxidants (Jan 2020)

Bardoxolone-Methyl (CDDO-Me) Suppresses Androgen Receptor and Its Splice-Variant AR-V7 and Enhances Efficacy of Enzalutamide in Prostate Cancer Cells

  • Namrata Khurana,
  • Partha K. Chandra,
  • Hogyoung Kim,
  • Asim B. Abdel-Mageed,
  • Debasis Mondal,
  • Suresh C. Sikka

DOI
https://doi.org/10.3390/antiox9010068
Journal volume & issue
Vol. 9, no. 1
p. 68

Abstract

Read online

Androgen receptor (AR) signaling is fundamental to prostate cancer (PC) progression, and hence, androgen deprivation therapy (ADT) remains a mainstay of treatment. However, augmented AR signaling via both full length AR (AR-FL) and constitutively active AR splice variants, especially AR-V7, is associated with the recurrence of castration resistant prostate cancer (CRPC). Oxidative stress also plays a crucial role in anti-androgen resistance and CRPC outgrowth. We examined whether a triterpenoid antioxidant drug, Bardoxolone-methyl, known as CDDO-Me or RTA 402, can decrease AR-FL and AR-V7 expression in PC cells. Nanomolar (nM) concentrations of CDDO-Me rapidly downregulated AR-FL in LNCaP and C4-2B cells, and both AR-FL and AR-V7 in CWR22Rv1 (22Rv1) cells. The AR-suppressive effect of CDDO-Me was evident at both the mRNA and protein levels. Mechanistically, acute exposure (2 h) to CDDO-Me increased and long-term exposure (24 h) decreased reactive oxygen species (ROS) levels in cells. This was concomitant with an increase in the anti-oxidant transcription factor, Nrf2. The anti-oxidant N-acetyl cysteine (NAC) could overcome this AR-suppressive effect of CDDO-Me. Co-exposure of PC cells to CDDO-Me enhanced the efficacy of a clinically approved anti-androgen, enzalutamide (ENZ), as evident by decreased cell-viability along with migration and colony forming ability of PC cells. Thus, CDDO-Me which is in several late-stage clinical trials, may be used as an adjunct to ADT in PC patients.

Keywords