Frontiers in Human Neuroscience (Oct 2021)
Effects of Piano Training in Unilateral Cerebral Palsy Using Probabilistic and Deterministic Tractography: A Case Report
Abstract
Cerebral palsy (CP) is an umbrella term encompassing motor and often additional disabilities, resulting from insult to the developing brain and remaining throughout life. Imaging-detected alterations in white matter microstructure affect not only motor but also sensorimotor pathways. In this context, piano training is believed to promote sensorimotor rehabilitation for the multiplicity of skills and neuronal processes it involves and integrates. However, it remains unknown how this contribution may occur. Here, effects of 1.5 years of piano training in an adolescent with unilateral CP were investigated through tests of manual function and by comparing fractional anisotropy, mean diffusivity, radial and axial diffusivity in neuronal pathways pre- vs. post-training. In the absence of a control condition and of data from a larger cohort, both probabilistic neighborhood and deterministic tractography were employed to reduce bias associated with a single-case analysis and/or with user-input. No changes in manual function were detected with the tests performed. In turn, the two tractography methods yielded similar values for all studied metrics. Furthermore, post-hoc analyses yielded increased fractional anisotropy accompanied by decreases in mean diffusivity in the bilateral dorsal cingulate that were at least as large as and more consistent than in the bilateral corticospinal tract. This suggests contributions of training to the development of non-motor processes. Reduced anisotropy and correspondingly high mean diffusivity were observed for the bilateral corticospinal tract as well as for the right arcuate and the inferior longitudinal fasciculus, two sensory processing-related pathways, confirming the importance of sensorimotor rehabilitation in CP.
Keywords