Nature Communications (Jul 2024)

High energy resolution CsPbBr3 alpha particle detector with a full-customized readout application specific integrated circuit

  • Xin Zhang,
  • Ruichen Bai,
  • Yuhao Fu,
  • Yingying Hao,
  • Xinkai Peng,
  • Jia Wang,
  • Bangzhi Ge,
  • Jianxi Liu,
  • Yongcai Hu,
  • Xiaoping Ouyang,
  • Wanqi Jie,
  • Yadong Xu

DOI
https://doi.org/10.1038/s41467-024-50746-7
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 9

Abstract

Read online

Abstract α particles must be monitored to be managed as radioactive diagnostic agents or nuclear activity indicators. The new generation of perovskite detectors suffer from limited energy resolution, which affects spectroscopy and imaging applications. Here, we report that the solution-grown CsPbBr3 crystal exhibits a low and stable dark current (34.6 nA·cm−2 at 200 V) by thinning the as-grown crystal to decrease the high concentration CsPb2Br5 phase near the surface. The introduction of the Schottky electrode for the CsPbBr3 detector further reduces the dark current and improves the high-temperature stability. An energy resolution of 6.9% is achieved with the commercial electronic system, while the effects of air scattering and absorption are investigated. Moreover, 1.1% energy resolution is recognized by a full-customized readout application-specific integrated circuit without any additional signal processing, which matches well with the given parameters of the CsPbBr3 detector by reducing the parasitic capacitance and electronic noise.