PLoS Neglected Tropical Diseases (Mar 2015)

Evaluation of inapparent dengue infections during an outbreak in Southern China.

  • Tao Wang,
  • Man Wang,
  • Bo Shu,
  • Xue-qin Chen,
  • Le Luo,
  • Jin-yu Wang,
  • Yong-zhuang Cen,
  • Benjamin D Anderson,
  • Mary M Merrill,
  • Hunter R Merrill,
  • Jia-hai Lu

DOI
https://doi.org/10.1371/journal.pntd.0003677
Journal volume & issue
Vol. 9, no. 3
p. e0003677

Abstract

Read online

Few studies evaluating inapparent dengue virus (DENV) infections have been conducted in China. In 2013, a large outbreak of DENV occurred in the city of Zhongshan, located in Southern China, which provided an opportunity to assess the clinical spectrum of disease. During the outbreak, an investigation of 887 index case contacts was conducted to evaluate inapparent and symptomatic DENV infections. Post-outbreak, an additional 815 subjects from 4 towns with, and 350 subjects from 2 towns without reported autochthonous DENV transmission, as determined by clinical diagnosis, were evaluated for serological evidence of dengue IgG antibodies. Between July and November 2013, there were 19 imported and 809 autochthonous dengue cases reported in Zhongshan. Of 887 case contacts enrolled during the outbreak, 13 (1.5%) exhibited symptomatic DENV infection, while 28 (3.2%) were inapparent. The overall I:S ratio was 2.2:1 (95% CI: 1.1-4.2:1). Post-outbreak serological data showed that the proportion of DENV IgG antibody detection from the 4 towns with and the 2 towns without reported DENV transmission was 2.7% (95% CI: 1.6%-3.8%) and 0.6% (95% CI: 0-1.4%), respectively. The I:S ratio in the 3 towns where clinical dengue cases were predominately typed as DENV-1 was 11.0:1 (95% CI: 3.7-∞:1). The ratio in the town where DENV-3 was predominately typed was 1.0:1 (95% CI: 0.5-∞:1). In this cross-sectional study, data suggests a high I:S ratio during a documented outbreak in Zhongshan, Southern China. These results have important implications for dengue control, implying that inapparent cases might influence DENV transmission more than previously thought.