EPJ Web of Conferences (Jan 2019)
A combined DFT/topological analysis approach for modeling disordered solid electrolytes
Abstract
In the scope of this study, the Ag2S·CdS·3SnS2 solid electrolyte disordered in the Cd/Sn sublattice is explored by means of the approach involving configurational space (CS) setting and first-principles calculations. Within the density functional theory calculations on the CS, the absolute differences in Ag vacancy formation energies up to 2.6 eV/cell were obtained for possible Cd/Sn dispositions. Subsequently, silver ion migration was modeled using the nudged elastic band method. The migration energies in the range of 0.250 to 2.993 eV/cell were obtained. By application of topological descriptors, namely, the relative disposition of Cd atoms and the number of Cd atoms in the vicinity of Ag vacancy, the reliable correlations were obtained between the Cd/Sn relative disposition and the calculated energy characteristics.