Swiss Journal of Geosciences (Jan 2022)

The deep Basel-1 geothermal well: an attempt assessing the predrilling hydraulic and hydrochemical conditions in the basement of the Upper Rhine Graben

  • Ingrid Stober,
  • Florentin Ladner,
  • Moritz Hofer,
  • Kurt Bucher

DOI
https://doi.org/10.1186/s00015-021-00403-8
Journal volume & issue
Vol. 115, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Hydrogeological properties of fluid reservoirs in the brittle continental crust at 5 km have been deduced from hydraulic and chemical data provided by the Deep Heat Mining well Basel-1 in the south of the Upper Rhine rift valley (central Europe, Switzerland). The investigation was challenging because no direct temperature logs or fluid samples from the undisturbed reservoir exist. However, the properties of the undisturbed reservoir have been reliably reconstructed from short time hydraulic tests and the evolution of outflow water composition. The rock of the open hole sections (4629–5000 m) is predominantly coarse-grained undeformed poorly fractured quartz-monzodiorite. The permeability k = 5.8 × 10–18 m2 is characteristic for plutonic basement at 5 km depth. Fluid flow is restricted to few steeply dipping fracture zones in this section. Outflow water triggered by massive injection of river water contains predominantly NaCl. The total of dissolved solids (TDS) in the pristine reservoir at depth is about 45 g kg−1. The origin of the high salinity is probably fossil seawater. The water has been modified in the reservoir by desiccation reactions related to the partial and local hydration of the igneous reservoir rock. The estimated reservoir temperature of 185 °C using three different calibrations of standard fluid geothermometers is in excellent agreement with measured and extrapolated temperatures in the borehole. The consistent application of different fluid geothermometers confirms the rock control of the fluid composition.

Keywords