IEEE Access (Jan 2021)

Wideband Variable-Gain Amplifiers Based on a Pseudo-Current-Steering Gain-Tuning Technique

  • Lingshan Kong,
  • Yong Chen,
  • Haohong Yu,
  • Chirn Chye Boon,
  • Pui-In Mak,
  • Rui P. Martins

DOI
https://doi.org/10.1109/ACCESS.2021.3062360
Journal volume & issue
Vol. 9
pp. 35814 – 35823

Abstract

Read online

This paper reports two variable-gain amplifiers (VGAs) featuring a new pseudo-current-steering gain-tuning technique. In the first VGA (VGA-I), a single-voltage-controlled dual-branch current mirror is developed as a standalone gain control block. In the second VGA (VGA-II), two NMOS transistors, which are biased by a tunable voltage, are integrated into a conventional common-source amplifier to steer away from a part of the total current. Meanwhile, the theoretical analysis is developed to reveal the mechanism of different gain tuning. Fabricated in a 40-nm CMOS process, VGA-I (VGA-II) occupies a tiny area of 0.03 mm2 (0.024 mm2) and consumes 22 mW (20 mW). Measured over a gain range of >64 dB, the -3-dB bandwidth of VGA-I (VGA-II) is 9 GHz (6.6 GHz). For the time-domain tests, VGA-I (VGA-II) exhibits a jitter of 40 ps (30 ps), under a 27-1 PRBS input at 12 Gb/s. Their power efficiencies (1.83 and 1.67 pJ/bit) compare favorably with state-of-the-art.

Keywords