IEEE Access (Jan 2020)

Coping With Multiple Visual Motion Cues Under Extremely Constrained Computation Power of Micro Autonomous Robots

  • Cheng Hu,
  • Caihua Xiong,
  • Jigen Peng,
  • Shigang Yue

DOI
https://doi.org/10.1109/ACCESS.2020.3016893
Journal volume & issue
Vol. 8
pp. 159050 – 159066

Abstract

Read online

The perception of different visual motion cues is crucial for autonomous mobile robots to react to or interact with the dynamic visual world. It is still a great challenge for a micro mobile robot to cope with dynamic environments due to the restricted computational resources and the limited functionalities of its visual systems. In this study, we propose a compound visual neural system to automatically extract and fuse different visual motion cues in real-time using the extremely constrained computation power of micro mobile robots. The proposed visual system contains multiple bio-inspired visual motion perceptive neurons each with a unique role, for example to extract collision visual cues, darker collision cue and directional motion cues. In the embedded system, these multiple visual neurons share a similar presynaptic network to minimise the consumption of computation resources. In the postsynaptic part of the system, visual cues pass results to corresponding action neurons using lateral inhibition mechanism. The translational motion cues, which are identified by comparing pairs of directional cues, are given the highest priority, followed by the darker colliding cues and approaching cues. Systematic experiments with both virtual visual stimuli and real-world scenarios have been carried out to validate the system's functionality and reliability. The proposed methods have demonstrated that (1) with extremely limited computation power, it is still possible for a micro mobile robot to extract multiple visual motion cues robustly in a complex dynamic environment; (2) the cues extracted can be fused with a lateral inhibited postsynaptic network, thus enabling the micro robots to respond effectively with different actions, accordingly to different states, in real-time. The proposed embedded visual system has been modularised and can be easily implemented in other autonomous mobile platforms for real-time applications. The system could also be used by neurophysiologists to test new hypotheses pertaining to biological visual neural systems.

Keywords