Dizhi lixue xuebao (May 2023)

Geological and evolutionary characteristics of the Gagarin Region on the far side of the Moon

  • SHAO Tianrui,
  • HAN Kunying,
  • JIN Ming,
  • SHI Chenglong,
  • PANG Jianfeng,
  • DING Xiaozhong

DOI
https://doi.org/10.12090/j.issn.1006-6616.2023035
Journal volume & issue
Vol. 30, no. 3
pp. 519 – 534

Abstract

Read online

Objective This study focuses on the Gagarin region on the far side of the Moon, aiming to reveal the geological characteristics, distribution features, and genesis of typical areas on the lunar far side. Additionally, it seeks to explore the regional geological evolution history of the Gagarin region. Methods The study primarily employs methods such as multi-source remote sensing data interpretation, regional geological mapping, and quantitative analysis of geological elements' quantity and distribution characteristics. Results (1) 656 impact craters were discovered in the study area, of which 552 have diameters greater than 20 kilometers. Approximately 71.5% of the Gagarin region is covered by ancient basins and their ejecta from the Aitken period. Based on comprehensive area and diameter data, the Aitken period is identified as the geological era with the largest proportion of large impact craters (diameter greater than 70 kilometers) and the largest average diameter. From the Aitken period to the Copernican period, the total area of impact craters in each geological era shows a decreasing trend from old to new. (2) In the study area, six parallel lunar grabens, 62 lobate scarps, one sinuous rille , 50 crater floor fractures, and 70 shallow faults were discovered. It also includes parts of the two longest inferred deep faults on the Moon, originating from the South Pole–Aitken tectonic zone and almost spanning the entire highland tectonic zone. According to Bouguer gravity anomalies and crustal thickness data, linear crustal thickness anomalies extending outward from the South Pole–Aitken basin reach the major basins on the near side of the Moon. (3) The Gagarin region is primarily located in the anorthositic highlands on the far side of the Moon. The rocks mainly consist of ferroan anorthosite (fa) suites, with some crater floors showing magnesium anorthosite (ma) suites. In the central and southern parts of the Gagarin region, low-titanium (TiO2 > 1.5 and < 4.5) and very low-titanium (TiO2 < 1.5) basalts are sparsely distributed on the floors of certain impact craters and basins. (4) For this study, we selected impact craters such as Aitken and Van der Graaf, with diameters ranging from 350 to 1400 m, for dating analysis. The results of crater size-frequency distribution dating indicate ages of 3.47 GA and 3.32 GA, respectively. (5) The quantitative statistics of impact craters and the dating results of basalt units indicate that the Aitkenian to Imbrian periods were active periods of external dynamic geological processes in the Gagarin region, while the Imbrian period was an active period of internal dynamic geological processes. Conclusion (1) The region’s longest and deepest faults are the result of the combined effects of the South Pole–Aitken impact event and internal and external stresses, including lunar thermal expansion. (2) The variations in the number and size of impact craters in the Gagarin region on the far side of the Moon are related to the evolution of the Earth–Moon system and the solar system. (3) Based on the quantitative statistical results of impact craters and the dating results of basalt units, this study elucidates the regional geological evolution history, and different stages of the geological processes in the Gagarin region were divided according to the active periods and stage characteristics of internal and external dynamic geological processes. Significance The study revealed the geological features of key areas on the far side of the moon, delving into the geological history of the Gagarin region and tentatively establishing a correlation between its geological traits and the lunar evolutionary history.

Keywords