Micromachines (Jan 2023)
Achieving Self-Supported Hierarchical Cu(OH)<sub>2</sub>/Nickel–Cobalt Sulfide Electrode for Electrochemical Energy Storage
Abstract
Herein, nickel–cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm−2 at 2 mA cm−2 and sustain 5.74 F cm−2 at 40 mA cm−2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm−2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.
Keywords