Geochronology (Apr 2021)

Uranium incorporation in fluorite and exploration of U–Pb dating

  • L. Lenoir,
  • T. Blaise,
  • A. Somogyi,
  • B. Brigaud,
  • J. Barbarand,
  • C. Boukari,
  • J. Nouet,
  • A. Brézard-Oudot,
  • M. Pagel

DOI
https://doi.org/10.5194/gchron-3-199-2021
Journal volume & issue
Vol. 3
pp. 199 – 227

Abstract

Read online

The age of ore deposits constitutes a decisive element in understanding their formation. Deciphering their precise chronology may be a challenge in the absence of mineral phases that can be dated by conventional geochronometers. Fluorite is very common either as the major or accessory mineral in a wide variety of ores and may provide information regarding the origin and timing of mineralizing fluid flows. In this contribution, we explore U–Pb dating on fluorite crystals from the world-class carbonate strata-bound fluorite ore of Pierre-Perthuis in Burgundy (Morvan massif, France). The uranium distribution within fluorite is mapped using induced fission-track and synchrotron radiation X-ray fluorescence nano-imaging, showing that higher U content is measured in an overgrowth of fluorite (Flog) as a discrete band. Preservation of a micrometer-thick zonation in U, associated with other substituted elements such as Sr, Y, Fe and Zr, implies that neither solid-state diffusion nor dissolution–recrystallization occurred. These U-bearing external fluorite overgrowths contain solid inclusions of about 30 µm globular pyrite crystals with a mean δ34S of −23.6 ± 0.4 ‰V-CDT. We propose that the U incorporation in the fluorite lattice results from the development of a redox front during bacterial sulfate reduction. Flog generation sampled and analyzed by laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS) on four different crystals provides identical U–Pb ages within the limits of analytical uncertainty. Considered altogether, these four crystals yield an age estimate of 40.0 ± 1.7 Ma, not corrected for matrix-related elemental fractionation. Our results show that fluorite LA-ICP-MS U–Pb geochronology has potential for dating distinct crystal growth stages, although further research should be conducted to evaluate its accuracy.