Scientific Reports (Apr 2023)

Role of DNA methylation in the relationship between glioma risk factors and glioma incidence: a two-step Mendelian randomization study

  • Amy E. Howell,
  • Caroline Relton,
  • Richard M. Martin,
  • Jie Zheng,
  • Kathreena M. Kurian

DOI
https://doi.org/10.1038/s41598-023-33621-1
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Genetic evidence suggests glioma risk is altered by leukocyte telomere length, allergic disease (asthma, hay fever or eczema), alcohol consumption, childhood obesity, low-density lipoprotein cholesterol (LDLc) and triglyceride levels. DNA methylation (DNAm) variation influences many of these glioma-related traits and is an established feature of glioma. Yet the causal relationship between DNAm variation with both glioma incidence and glioma risk factors is unknown. We applied a two-step Mendelian randomization (MR) approach and several sensitivity analyses (including colocalization and Steiger filtering) to assess the association of DNAm with glioma risk factors and glioma incidence. We used data from a recently published catalogue of germline genetic variants robustly associated with DNAm variation in blood (32,851 participants) and data from a genome-wide association study of glioma risk (12,488 cases and 18,169 controls, sub-divided into 6191 glioblastoma cases and 6305 non-glioblastoma cases). MR evidence indicated that DNAm at 3 CpG sites (cg01561092, cg05926943, cg01584448) in one genomic region (HEATR3) had a putative association with glioma and glioblastoma risk (False discovery rate [FDR] < 0.05). Steiger filtering provided evidence against reverse causation. Colocalization presented evidence against genetic confounding and suggested that differential DNAm at the 3 CpG sites and glioma were driven by the same genetic variant. MR provided little evidence to suggest that DNAm acts as a mediator on the causal pathway between risk factors previously examined and glioma onset. To our knowledge, this is the first study to use MR to appraise the causal link of DNAm with glioma risk factors and glioma onset. Subsequent analyses are required to improve the robustness of our results and rule out horizontal pleiotropy.