Journal of the Egyptian Mathematical Society (Apr 2019)

On spacelike equiform-Bishop Smarandache curves on S12 $S_{1}^{2}$

  • E. M. Solouma,
  • W. M. Mahmoud

DOI
https://doi.org/10.1186/s42787-019-0009-x
Journal volume & issue
Vol. 27, no. 1
pp. 1 – 17

Abstract

Read online

Abstract In this paper, we introduce the equiform-Bishop frame of a spacelike curve r lying fully on S12 $S_{1}^{2}$ in Minkowski 3-space ℝ13 $\mathbb {R}^{3}_{1}$. By using this frame, we investigate the equiform-Bishop Frenet invariants of special spacelike equiform-Bishop Smarandache curves of a spacelike base curve in ℝ13 $\mathbb {R}^{3}_{1}$. Furthermore, we study the geometric properties of these curves when the spacelike base curve r is specially contained in a plane. Finally, we give a computational example to illustrate these curves.

Keywords