Remote Sensing (Mar 2018)

Evaluating Different Methods for Estimating Diameter at Breast Height from Terrestrial Laser Scanning

  • Chang Liu,
  • Yanqiu Xing,
  • Jialong Duanmu,
  • Xin Tian

DOI
https://doi.org/10.3390/rs10040513
Journal volume & issue
Vol. 10, no. 4
p. 513

Abstract

Read online

The accurate measurement of diameter at breast height (DBH) is essential to forest operational management, forest inventory, and carbon cycle modeling. Terrestrial laser scanning (TLS) is a measurement technique that allows rapid, automatic, and periodical estimates of DBH information. With the multitude of DBH estimation approaches available, a systematic study is needed to compare different algorithms and evaluate the ideal situations to use a specific algorithm. To contribute to such an approach, this study evaluated three commonly used DBH estimation algorithms: Hough-transform, linear least square circle fitting, and nonlinear least square circle fitting. They were each evaluated on their performance using two forest types of TLS data under numerous preprocessing conditions. The two forest types were natural secondary forest and plantation. The influences of preprocessing conditions on the performance of the algorithms were also investigated. Results showed that among the three algorithms, the linear least square circle fitting algorithm was the most appropriate for the natural secondary forest, and the nonlinear least square circle fitting algorithm was the most appropriate for the plantation. In the natural secondary forest, a moderate gray scale threshold of three and a slightly large height bin of 0.24 m were the optimal parameters for the appropriate algorithm of the multi-scan scanning method, and a moderate gray scale threshold of three and a large height bin of 1.34 m were the optimal parameters for the appropriate algorithm of the single-scan scanning method. A small gray scale threshold of one and a small height bin of 0.1 m were the optimal parameters for the appropriate algorithm of the single-scan scanning method in the plantation.

Keywords