Engineering Science and Technology, an International Journal (Oct 2020)

Thermodynamic modeling and production of FeCo alloy from mill scale through metallothermic reduction

  • Mehmet Bugdayci,
  • Gul Deniz,
  • Ceren Ziyreker,
  • Ahmet Turan,
  • Levent Oncel

Journal volume & issue
Vol. 23, no. 5
pp. 1259 – 1265

Abstract

Read online

Mill scale is a waste material arises during the continuous casting of steel. It contains approximately 70% iron by mass. Mill scale is used as an iron source in many applications to reduce costs. In this study, it was aimed to produce FeCo alloy through the metallothermic reduction of mill scale and Co3O4. The metallothermic reduction was chosen because of its advantages such as minimum energy need, short process time and no need for high-tech equipment. The system was thermochemically simulated with FactSage and HSC software. In the experimental studies, the effects of the use of aluminium, as a reductant, in different stoichiometries on total metal recovery yield were investigated. The effects of aluminium stoichiometry on hardness and microstructure were also investigated. As a result of the experimental studies, it was seen that highest metal recovery yields were obtained as 81.25% for iron and 93.78% for cobalt with the mixture including 105% stoichiometric aluminium.

Keywords