Geophysical Research Letters (Feb 2020)

Spin Transition of Iron in δ‐(Al,Fe)OOH Induces Thermal Anomalies in Earth's Lower Mantle

  • Wen‐Pin Hsieh,
  • Takayuki Ishii,
  • Keng‐Hsien Chao,
  • Jun Tsuchiya,
  • Frédéric Deschamps,
  • Eiji Ohtani

DOI
https://doi.org/10.1029/2020GL087036
Journal volume & issue
Vol. 47, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract Seismic anomalies observed in Earth's deep mantle are conventionally considered to be associated with thermal and compositional anomalies, and possibly partial melt of major lower‐mantle phases. However, through deep water cycle, impacts of hydrous minerals on geophysical observables and on the deep mantle thermal state and geodynamics remain poorly understood. Here we precisely measured thermal conductivity of δ‐(Al,Fe)OOH, an important water‐carrying mineral in Earth's deep interior, to lowermost mantle pressures at room temperature. The thermal conductivity varies drastically by twofold to threefold across the spin transition of iron, resulting in an exceptionally low thermal conductivity at the lowermost mantle conditions. As δ‐(Al,Fe)OOH is transported to the lowermost mantle, its exceptionally low thermal conductivity may serve as a local thermal insulator, promoting high‐temperature anomalies and the formation of partial melt and thermal plumes at the base of the mantle, strongly influencing thermo‐chemical profiles in the region and fate of Earth's deep water cycle.

Keywords