PLoS ONE (Jan 2014)

First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives.

  • Gregory S Schorr,
  • Erin A Falcone,
  • David J Moretti,
  • Russel D Andrews

DOI
https://doi.org/10.1371/journal.pone.0092633
Journal volume & issue
Vol. 9, no. 3
p. e92633

Abstract

Read online

Cuvier's beaked whales (Ziphius cavirostris) are known as extreme divers, though behavioral data from this difficult-to-study species have been limited. They are also the species most often stranded in association with Mid-Frequency Active (MFA) sonar use, a relationship that remains poorly understood. We used satellite-linked tags to record the diving behavior and locations of eight Ziphius off the Southern California coast for periods up to three months. The effort resulted in 3732 hr of dive data with associated regional movements--the first dataset of its kind for any beaked whale--and included dives to 2992 m depth and lasting 137.5 min, both new mammalian dive records. Deep dives had a group mean depth of 1401 m (s.d. = 137.8, n = 1142) and duration of 67.4 min (s.d. = 6.9). The group mean time between deep dives was 102.3 min (s.d. = 30.8, n = 783). While the previously described stereotypic pattern of deep and shallow dives was apparent, there was considerable inter- and intra-individual variability in most parameters. There was significant diel behavioral variation, including increased time near the surface and decreased shallow diving at night. However, maximum depth and the proportion of time spent on deep dives (presumed foraging), varied little from day to night. Surprisingly, tagged whales were present within an MFA sonar training range for 38% of days locations were received, and though comprehensive records of sonar use during tag deployments were not available, we discuss the effects frequent acoustic disturbance may have had on the observed behaviors. These data better characterize the true behavioral range of this species, and suggest caution should be exercised when drawing conclusions about behavior using short-term datasets.