Journal of Magnetic Resonance Open (Mar 2024)

A cryogenic tune and match circuit for magnetic resonance microscopy at 15.2T

  • Benjamin M Hardy,
  • Gary Drake,
  • Shuyang Chai,
  • Bibek Dhakal,
  • Jonathan B Martin,
  • Junzhong Xu,
  • Mark D Does,
  • Adam W Anderson,
  • Xinqiang Yan,
  • John C Gore

Journal volume & issue
Vol. 18
p. 100147

Abstract

Read online

Background and Significance: Achievable signal to noise ratios (SNR) in magnetic resonance microscopy images are limited by acquisition times and the decreasing number of spins in smaller voxels. A common method of enhancing SNR is to cool the RF receiver coil. Significant SNR gains are realized only when the Johnson noise generated within the RF hardware is large compared to the electromagnetic noise produced by the sample. Cryogenic cooling of imaging probes is in common use in high field systems, but it is difficult to insulate a sample from the extreme temperatures involved and in practice imaging cryoprobes have been limited to surface or partial volume designs only. In order to use a solenoid in which the windings were not directly cooled and in close proximity to the sample, we designed a chamber to cool only the tune and match circuitry and show experimentally it is possible to achieve much of the theoretically available SNR gain. Methods: A microcoil circuit consisting of two tuning capacitors, one fixed capacitor, and SMB coaxial cable was designed to resonate at 650 MHz for imaging on a Bruker 15.2 T scanner. Sample noise increases with the sample diameter, so surface loops and solenoids of varying diameters were tested on the bench to determine the largest diameter coil that demonstrated significant SNR gains from cooling. A liquid N2 cryochamber was designed to cool the tune and match circuit, coaxial cable, and connectors, while leaving the RF coil in ambient air. As the cryochamber was filled with liquid N2, quality factors were measured on the bench while monitoring the coil's surface temperature. Improvements of SNR on images of ionic solutions were demonstrated via cooling the tune and match circuit in the magnet bore. Results: At 650 MHz, loops and solenoids < 3 mm in diameter showed significant improvements in quality factor on the bench. The resistance of the variable capacitors and the coaxial cable were measured to be 45% and 32% of room temperature values near the Larmor frequency. Images obtained with a 2 turn, 3 mm diameter loop with the matching circuit at room temperature and then cooled with liquid nitrogen demonstrated SNR improvements of a factor of 2. Conclusions: By cooling the tune and match circuit and leaving the surface loop in ambient air, SNR was improved by a factor of 2. The results are significant because it allows for more space to insulate the sample from the extreme temperatures used in imaging cryoprobes.

Keywords