Molecular Genetics & Genomic Medicine (Dec 2020)

Further delineation of autosomal recessive intellectual disability syndrome caused by homozygous variant of the NSUN2 gene in a chinese pedigree

  • Songyang Sun,
  • Lin Chen,
  • Yuchuan Wang,
  • Jian Wang,
  • Niu Li,
  • Xike Wang

DOI
https://doi.org/10.1002/mgg3.1518
Journal volume & issue
Vol. 8, no. 12
pp. n/a – n/a

Abstract

Read online

Abstract Background The enzyme NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the methylation of cytosine to 5‐methylcytosine (m5C) at position 34 of tRNA(Leu; CAA) precursors containing introns that play a vital role in spindle assembly during mitosis and chromosome segregation. Biallelic variants in the NSUN2 gene cause a rare intellectual disability that has been identified only in a few Middle Eastern patients. Affected individuals usually have other deformities, including developmental delay, short stature, microcephaly, and facial dysmorphism. The aim of this study was to identify the genetic cause of three female patients from a Chinese pedigree, who presented with similar phenotype consisting of the above clinical features. Methods Whole‐exome sequencing (WES) was used to screen for causal variants in the genome, and the candidate variants were subsequently verified using Sanger sequencing. Results WES revealed a previously unreported homozygous nonsense variant (NM_017755.5: c.1004T>A, p.Leu335*) in exon 9 of NSUN2, which was consistent with the clinical phenotype of the patients and co‐segregated with the disease in their family. A comparison of this phenotype with that of patients in published reports uncovered several novel clinical features related to NSUN2 variations, including feeding difficulties, slender hands and fingers, severely restricted finger mobility, hallux valgus, varus foot, and elevated α‐hydroxybutyrate dehydrogenase (HBDH). Conclusions These are the first findings of a non‐consanguineous Chinese pedigree with a homozygous NSUN2 variant. We expanded the phenotypic spectrum associated with NSUN2 variations.

Keywords