Journal of Infection and Public Health (Dec 2023)

Factors associated with COVID-19 brought-in deaths: A data-linkage comparative cross-sectional study

  • Ameerah Su’ad Abdul Shakor,
  • Ely Zarina Samsudin,
  • Xin Wee Chen,
  • Muhammad Haikal Ghazali

Journal volume & issue
Vol. 16, no. 12
pp. 2068 – 2078

Abstract

Read online

Background: The phenomenon of Coronavirus disease 2019 (COVID-19) brought-in-dead (BID), i.e., COVID-19 deaths occurring outside hospital settings, suggests missed opportunities for life-saving care. However, much is still unknown with regards to its potential determinants. The present study aimed to examine the factors associated with COVID-19 BID by integrating new variables from multiple databases. Methods: This multi-database comparative cross-sectional study examined COVID-19 in-patient deaths (IPD) and COVID-19 BID (n = 244 in each group) in Selangor, Malaysia. BID cases, IPD cases, and their sociodemographic, clinical, and health behaviour factors were identified from the COVID-19 mortality investigation reports submitted to the Selangor State Health Department between 14 February 2022 and 31 March 2023. Data linkage was used to connect three open-source databases—GitHub-MOH, Socioeconomic Data and Applications Center, and OpenStreetMap—and identify health infrastructure and geospatial factors. The groups were compared using chi-square tests, independent t-tests, and logistic regression analyses to identify factors associated with COVID-19 BID. Results: The COVID-19 IPD and BID cases were comparable. After adjusting for confounders, non-Malaysian nationality (AOR: 3.765, 95% CI: 1.163, 12.190), obesity (AOR: 5.272, 95% CI: 1.131, 24.567), not seeking treatment while unwell (AOR: 5.385, 95% CI: 3.157, 9.186), and a higher percentage of COVID-19-dedicated beds occupied on the date of death (AOR: 1.165, 95% CI: 1.078, 1.259) were associated with increased odds of COVID-19 BID. On the other hand, being married (AOR: 0.396, 95% CI: 0.158, 0.997) and the interaction between the percentage of COVID-19-dedicated beds occupied and the percentage of ventilators in use (AOR: 0.996, 95% CI: 0.994, 0.999) emerged as protective factors. Conclusion: These findings indicated that certain groups have higher odds of COVID-19 BID and thus, require closer monitoring. Considering that COVID-19 BID is influenced by various elements beyond clinical factors, intensifying public health initiatives and multi-organisational collaboration is necessary to address this issue.

Keywords