Advanced Electronic Materials (Nov 2023)

Fabrication of Large‐Area Organic Thin Film Transistor Array with Highly Uniform Water‐Borne Polyimide Gate Dielectric via Green Solvent‐Engineered Bar‐Coating Process

  • Jinha Ha,
  • Dongkyu Kim,
  • Hyunjin Park,
  • Sungmi Yoo,
  • Yujin So,
  • Jinsoo Kim,
  • Jongmin Park,
  • Jong Chan Won,
  • Yun Ho Kim

DOI
https://doi.org/10.1002/aelm.202300362
Journal volume & issue
Vol. 9, no. 11
pp. n/a – n/a

Abstract

Read online

Abstract Here, the utilization of a highly uniform water‐borne polyimide (W‐PI) thin film as a gate dielectric layer for large‐scale organic thin film transistors (OTFTs) exceeding 100 cm2 is presented, employing the bar‐coating technique. The W‐PI thin films are obtained uniformly over a large area by systematically manipulating the surface tension of the water‐soluble poly(amic acid) salts (W‐PAAS) solution using alcohol as a co‐solvent in a “Green” process. The thickness of the W‐PI thin film is precisely controlled within the range of tens to hundreds of nanometers by adjusting key parameters, including the concentration of the W‐PAAS solution, wire diameter, and bar‐coating speed. As a result, 500 pentacene‐based OTFTs are successfully fabricated on a 10 × 10 cm2 substrate, utilizing a 280 nm thick W‐PI gate dielectric film. These devices exhibit excellent uniformity, with field‐effect mobility of 0.20 ± 0.02 cm2 V−1 s−1. Furthermore, the fabrication of electronic devices using an environmental‐friendly bar‐coating method on large‐area flexible substrates is demonstrated. This study highlights the considerable potential of eco‐friendly W‐PI thin films as dielectric materials, offering advantages such as cost‐effectiveness and high efficiency for reliable industrial applications.

Keywords