Electronic Journal of Qualitative Theory of Differential Equations (Aug 2023)
Normalized solutions to the Schrödinger systems with double critical growth and weakly attractive potentials
Abstract
In this paper, we look for solutions to the following critical Schrödinger system $$\begin{cases} -\Delta u+(V_1+\lambda_1)u=|u|^{2^*-2}u+|u|^{p_1-2}u+\beta r_1|u|^{r_1-2}u|v|^{r_2}&{\rm in}\ \mathbb{R}^N,\\ -\Delta v+(V_2+\lambda_2)v=|v|^{2^*-2}v+|v|^{p_2-2}v+\beta r_2|u|^{r_1}|v|^{r_2-2}v&{\rm in}\ \mathbb{R}^N, \end{cases}$$ having prescribed mass $\int_{\mathbb{R}^N}u^2=a_1>0$ and $\int_{\mathbb{R}^N}v^2=a_2>0$, where $\lambda_1,\lambda_2\in\mathbb{R}$ will arise as Lagrange multipliers, $N\geqslant3$, $2^*=2N/(N-2)$ is the Sobolev critical exponent, $r_1,r_2>1$, $p_1,p_2,r_1+r_2\in(2+4/N,2^*)$ and $\beta>0$ is a coupling constant. Under suitable conditions on the potentials $V_1$ and $V_2$, $\beta_*>0$ exists such that the above Schrödinger system admits a positive radial normalized solution when $\beta\geqslant\beta_*$. The proof is based on comparison argument and minmax method.
Keywords