Remote Sensing (Feb 2023)
Sentinel-1 Response to Canopy Moisture in Mediterranean Forests before and after Fire Events
Abstract
This study investigates the sensibility of Sentinel-1 C-band backscatter to the moisture content of tree canopies over an area of about 500 km2 in north-western Portugal, with specific analysis over burnt areas. Sentinel-1 C-VV and C-VH backscatter values from 276 images acquired between January 2018 and December 2020 were assigned to five classes depending on the Drought Code (DC) scenario over several unburned and burned sites with total (>90%) forest canopy cover. Confounding variables such as tree cover and incidence angle were accounted for by masking using specific thresholds. The following results are discussed: (a) C-VV and C-VH backscatter values are inversely correlated (R2 = 0.324 to 0.438 −p < 0.001) with local incidence angle over canopies; (b) correlation is significantly stronger over very wet scenarios (DC class = 0 to 1); (c) C-VV and C-VH backscatter values can discriminate wet to dry forest environments, but they are less sensitive to the transition between dry (DC classes = 1 to 10, 10 to 100) and extremely dry environments (DC classes = 100 to 1000); (d) C-VH is more sensible than C-VV to capture burnt canopy; and (e) the C-VH polarization captures post-fire recovery after an average minimum period of 360 days after the fire event, although with less distinction for extremely wet soils. We conclude that C-band VH backscatter intensity decreases from wet to dry canopy conditions, that this behavior of the backscatter signal with respect to canopy dryness is lost after a fire event, and that after one year it is recovered.
Keywords