Frontiers in Medicine (Apr 2021)

scFv-Anti-LDL(-)-Metal-Complex Multi-Wall Functionalized-Nanocapsules as a Promising Tool for the Prevention of Atherosclerosis Progression

  • Marcela Frota Cavalcante,
  • Márcia Duarte Adorne,
  • Walter Miguel Turato,
  • Marina Kemmerer,
  • Mayara Klimuk Uchiyama,
  • Ana Carolina Cavazzin Asbahr,
  • Aline de Cristo Soares Alves,
  • Sandra Helena Poliselli Farsky,
  • Carine Drewes,
  • Marina Cecília Spatti,
  • Soraya Megumi Kazuma,
  • Marcel Boss,
  • Silvia Stanisçuaski Guterres,
  • Koiti Araki,
  • Bernhard Brüne,
  • Dmitry Namgaladze,
  • Adriana Raffin Pohlmann,
  • Dulcineia Saes Parra Abdalla

DOI
https://doi.org/10.3389/fmed.2021.652137
Journal volume & issue
Vol. 8

Abstract

Read online

Atherosclerosis can be originated from the accumulation of modified cholesterol-rich lipoproteins in the arterial wall. The electronegative LDL, LDL(-), plays an important role in the pathogenesis of atherosclerosis once this cholesterol-rich lipoprotein can be internalized by macrophages, contributing to the formation of foam cells, and provoking an immune-inflammatory response. Herein, we engineered a nanoformulation containing highly pure surface-functionalized nanocapsules using a single-chain fragment variable (scFv) reactive to LDL(-) as a ligand and assessed whether it can affect the LDL(-) uptake by primary macrophages and the progression of atherosclerotic lesions in Ldlr−/− mice. The engineered and optimized scFv-anti-LDL(-)-MCMN-Zn nanoformulation is internalized by human and murine macrophages in vitro by different endocytosis mechanisms. Moreover, macrophages exhibited lower LDL(-) uptake and reduced mRNA and protein levels of IL1B and MCP1 induced by LDL(-) when treated with this new nanoformulation. In a mouse model of atherosclerosis employing Ldlr−/− mice, intravenous administration of scFv-anti-LDL(-)-MCMN-Zn nanoformulation inhibited atherosclerosis progression without affecting vascular permeability or inducing leukocytes-endothelium interactions. Together, these findings suggest that a scFv-anti-LDL(-)-MCMN-Zn nanoformulation holds promise to be used in future preventive and therapeutic strategies for atherosclerosis.

Keywords