Journal of Mathematical Cryptology (Aug 2020)

Hash functions from superspecial genus-2 curves using Richelot isogenies

  • Castryck Wouter,
  • Decru Thomas,
  • Smith Benjamin

DOI
https://doi.org/10.1515/jmc-2019-0021
Journal volume & issue
Vol. 14, no. 1
pp. 268 – 292

Abstract

Read online

In 2018 Takashima proposed a version of Charles, Goren and Lauter’s hash function using Richelot isogenies, starting from a genus-2 curve that allows for all subsequent arithmetic to be performed over a quadratic finite field 𝔽p2. In 2019 Flynn and Ti pointed out that Takashima’s hash function is insecure due to the existence of small isogeny cycles. We revisit the construction and show that it can be repaired by imposing a simple restriction, which moreover clarifies the security analysis. The runtime of the resulting hash function is dominated by the extraction of 3 square roots for every block of 3 bits of the message, as compared to one square root per bit in the elliptic curve case; however in our setting the extractions can be parallelized and are done in a finite field whose bit size is reduced by a factor 3. Along the way we argue that the full supersingular isogeny graph is the wrong context in which to study higher-dimensional analogues of Charles, Goren and Lauter’s hash function, and advocate the use of the superspecial subgraph, which is the natural framework in which to view Takashima’s 𝔽p2-friendly starting curve.

Keywords