Notulae Scientia Biologicae (Mar 2016)
Water Stress Effect on Cell Wall Components of Maize (<i>Zea mays</i>) Bran
Abstract
In México, around 82% of the total production of maize is grown under rainfed conditions leading to a water stress environment which affects physiologic and biochemical process of the plant. Maize bran is a composited plant material consisting mainly in aleurone layer, testa and pericarp; the cell walls of these tissues are composed of proteins, non-starch polysaccharides, phenolic acids and lignin which are potential bioactive substances for human nutrition. In this research it was investigated the effect of water stress on cell wall components in the bran of three genotypes of maize by applying irrigation and water stress treatments. The content of protein, lignin, arabinoxylans, total phenols and phenolic acids was performed in the bran of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ genotypes. Water stress applied through grain development stage increased protein levels of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ in 4.05, 16.13 and 0.40% respectively. Respecting to lignin content, water stress increased levels at 1.28, 2.26 and 4.24% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. Arabinoxylans content also increased in water stress treatment at levels of 1.28, 2.26 and 3.66% in ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ. On the other hand, water stress treatment decreased the levels of total phenols and hydroxycinnamic acids in the three maize hybrids analysed. Reduction of total phenols was 35.34, 5.59 and 31.57% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. In addition, the levels of t-ferulic, c-ferulic and p-coumaric acids decreased 17.74, 23.93, 29.83% in ʽCebúʼ, 8.92, 8.62, 24.03% in ʽDK2027ʼ and 13.66, 11.03, 10.38% in ʽDK2034ʼ respectively.