Cell Reports (Oct 2012)

The Transcriptional Specificity of NF-κB Dimers Is Coded within the κB DNA Response Elements

  • Vivien Ya-Fan Wang,
  • Wendy Huang,
  • Masataka Asagiri,
  • Nathanael Spann,
  • Alexander Hoffmann,
  • Christopher Glass,
  • Gourisankar Ghosh

DOI
https://doi.org/10.1016/j.celrep.2012.08.042
Journal volume & issue
Vol. 2, no. 4
pp. 824 – 839

Abstract

Read online

Nuclear factor κB (NF-κB) regulates gene expression by binding to specific DNA elements, known collectively as κB sites, that are contained within the promoters/enhancers of target genes. We found that the identity of the central base pair (bp) of κB sites profoundly affects the transcriptional activity of NF-κB dimers. RelA dimers prefer an A/T bp at this position for optimal transcriptional activation (A/T-centric) and discriminate against G/C-centric κB sites. The p52 homodimer, in contrast, activates transcription from G/C-centric κB sites in complex with Bcl3 but represses transcription from the A/T-centric sites. The p52:Bcl3 complex binds to these two classes of κB sites in distinct modes, permitting the recruitment of coactivator, corepressor, or both coactivator and corepressor complexes in promoters that contain G/C-, A/T-, or both G/C- and A/T-centric sites. Therefore, through sensing of bp differences within κB sites, NF-κB dimers modulate biological programs by activating, repressing, and altering the expression of effector genes.