Applied Sciences (Feb 2020)
Binaural Rendering with Measured Room Responses: First-Order Ambisonic Microphone vs. Dummy Head
Abstract
To improve the limited degree of immersion of static binaural rendering for headphones, an increased measurement effort to obtain multiple-orientation binaural room impulse responses (MOBRIRs) is reasonable and enables dynamic variable-orientation rendering. We investigate the perceptual characteristics of dynamic rendering from MOBRIRs and test for the required angular resolution. Our first listening experiment shows that a resolution between 15 ∘ and 30 ∘ is sufficient to accomplish binaural rendering of high quality, regarding timbre, spatial mapping, and continuity. A more versatile alternative considers the separation of the room-dependent (RIR) from the listener-dependent head-related (HRIR) parts, and an efficient implementation thereof involves the measurement of a first-order Ambisonic RIR (ARIR) with a tetrahedral microphone. A resolution-enhanced ARIR can be obtained by an Ambisonic spatial decomposition method (ASDM) utilizing instantaneous direction of arrival estimation. ASDM permits dynamic rendering in higher-order Ambisonics, with the flexibility to render either using dummy-head or individualized HRIRs. Our comparative second listening experiment shows that 5th-order ASDM outperforms the MOBRIR rendering with resolutions coarser than 30 ∘ for all tested perceptual aspects. Both listening experiments are based on BRIRs and ARIRs measured in a studio environment.
Keywords