Applied Sciences (Oct 2021)

Comparison of Structure and Magnetic Properties of Ni/C Composites Synthesized from Wheat Straw by Different Methods

  • Ihor Bordun,
  • Krzysztof Chwastek,
  • Dariusz Całus,
  • Piotr Chabecki,
  • Fedir Ivashchyshyn,
  • Zenoviy Kohut,
  • Anatoliy Borysiuk,
  • Yuriy Kulyk

DOI
https://doi.org/10.3390/app112110031
Journal volume & issue
Vol. 11, no. 21
p. 10031

Abstract

Read online

Synthesis of Ni/C nanostructured composites based on a natural raw material, i.e., wheat straw, is carried out in this work. The synthesis is performed by one- and two-stage methods using NiCl2 as the activating agent. The X-ray diffraction and EDS analyses reveal the presence of metallic nickel in the structure of the composites, whereas magnetic measurements showed that nickel was contained in the porous carbon matrix in the nanoparticle state. For nanocomposites synthesized by the one-stage method, the largest contribution to the formation of the porous structure might be attributed to pores with radii from 5 to 30 nm; for a nanocomposite synthesized in two stages, the pore distribution function exhibits a narrow isolated peak with a maximum of around 2.6 nm. Based on the obtained magnetic data, the coercive force, specific saturation magnetization and nickel content in nanocomposites are calculated. For the measured values of the coercive force, the average size of magnetic moment carriers is determined to be ~100 nm for the two-stage synthesis nanocomposite and ~100 ÷ 110 nm for the one-stage synthesis nanocomposites. The developed Ni/C nanocomposites might be used as a cheap material for energy storage applications or as magnetically controlled adsorbents.

Keywords