Energies (Aug 2024)

Open-Source Internet of Things-Based Supervisory Control and Data Acquisition System for Photovoltaic Monitoring and Control Using HTTP and TCP/IP Protocols

  • Wajahat Khalid,
  • Mohsin Jamil,
  • Ashraf Ali Khan,
  • Qasim Awais

DOI
https://doi.org/10.3390/en17164083
Journal volume & issue
Vol. 17, no. 16
p. 4083

Abstract

Read online

This study presents a cost-effective IoT-based Supervisory Control and Data Acquisition system for the real-time monitoring and control of photovoltaic systems in a rural Pakistani community. The system utilizes the Blynk platform with Arduino Nano, GSM SIM800L, and ESP-32 microcontrollers. The key components include a ZMPT101B voltage sensor, ACS712 current sensors, and a Maximum Power Point Tracking module for optimizing power output. The system operates over both Global System for Mobile Communications and Wi-Fi networks, employing universal asynchronous receiver–transmitter serial communication and using the transmission control protocol/Internet protocol and hypertext transfer protocol for data exchange. Testing showed that the system consumes only 3.462 W of power, making it highly efficient. With an implementation cost of CAD 35.52, it offers an affordable solution for rural areas. The system achieved an average data transmission latency of less than 2 s over Wi-Fi and less than 5 s over GSM, ensuring timely data updates and control. The Blynk 2.0 app provides data retention capabilities, allowing users to access historical data for performance analysis and optimization. This open-source SCADA system demonstrates significant potential for improving efficiency and user engagement in renewable energy management, offering a scalable solution for global applications.

Keywords