PLoS ONE (Jan 2024)
Event-related potentials study on the effects of high neuroticism on senile false memory.
Abstract
ObjectiveTo study the false memory among senile normal people with high neuroticism and low neuroticism using neuropsychological scales and event-related potentials (ERPs), and to explore the effects of high neuroticism on false memory and its neuroelectrophysiological mechanism.MethodsA cross-sectional study was conducted, in which the general situation questionnaire, adult version of Eysenck personality questionnaire (EPQ) and Montreal cognitive assessment (MoCA) scale were used to establish a multi-dimensional survey in senile normal people over 60 years old from communities in Zhengzhou, and the EPQ and general situation questionnaire were used to comprehensively screen and divide the study subjects into high neuroticism group and low neuroticism group from 206 senile people. The population was matched by 1:1 according to gender, age (±2 years), and years of education (±2 years), and 40 subjects were finally enrolled for detection of electroencephalograph (EEG) components using ERPs. The Deese-Roediger-McDermott (DRM) paradigm of false memory was designed using E-prime2.0 system, and the stimulus program was presented. The EEG signals of the study subjects were recorded in real time and acquired using 64-channel Neuroscan EEG signals acquisition system.ResultsHigh neuroticism group was evidently lower in the mean accuracy than low neuroticism group, and the difference in the mean accuracy was statistically significant (P = 0.013), but the difference in reaction time was not statistically significant. 2. The mean amplitude of EEG component N400: The difference in the main effect of N400 in the brain region was significantly different (PConclusionsHigh neuroticism can significantly increase the false memory of senile normal people. The EEG components N400 and LPC are potential early indicators of high neuroticism affecting false memory. High neuroticism may influence false memory by affecting the frontal cortex function.