Engineering and Technology Journal (Jan 2023)
Numerical Investigation of Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger with Different Fin Shape Inserts
Abstract
The printed circuit heat exchanger is one of the most recent important heat exchangers, especially in the nuclear power plant and aerospace applications, due to its very compact geometry and small print foot. This paper presents a 3D numerical investigation of the thermo-hydraulic performance of PCHE with a new non-uniform channel design configuration. The new channel design consists of two different fins and shape inserts: the diamond and biconvex shapes. The influence of two design parameters on the heat exchanger performance was studied and optimized, the longitudinal and transverse pitch length (Pl) and (Pt). Air with constant properties as the working fluid with constant heat flux at the walls envelope. The Reynolds number varied from 200 to 2000. Different Pitch lengths were used (Pl=20, 30, 40, and 50) mm and (Pt=3, 4, and 5) mm. Three performance parameters were studied the Nusselt number, friction factor, and the overall performance evaluation factor. Results show that the thermal performance enhanced with decreasing the pitch lengths, and it was shown that this enhancement was found only at high Reynolds numbers above 1400. The higher enhancement factor was with NACA 0020 airfoil fins at pt=3 mm and pl=20mm of η=2.75 at Re=2000, while the worst performance was obtained with biconvex fins. The main reason behind the enhancement is the disruption of the boundary layer and the good mixing induced in the fluid flow.
Keywords