Ural Mathematical Journal (Jul 2020)
DOMINATION AND EDGE DOMINATION IN TREES
Abstract
Let \(G=(V,E)\) be a simple graph. A set \(S\subseteq V\) is a dominating set if every vertex in \(V \setminus S\) is adjacent to a vertex in \(S\). The domination number of a graph \(G\), denoted by \(\gamma(G)\) is the minimum cardinality of a dominating set of \(G\). A set \(D \subseteq E\) is an edge dominating set if every edge in \(E\setminus D\) is adjacent to an edge in \(D\). The edge domination number of a graph \(G\), denoted by \(\gamma'(G)\) is the minimum cardinality of an edge dominating set of \(G\). We characterize trees with domination number equal to twice edge domination number.
Keywords