آب و فاضلاب (Aug 2022)

Modification of Functionalized Polyethylene Terephthalates by Ultrasonic Synthesis of Silver Nanoparticles and Removal and Electrochemical Measurement of Methyl Orange Dye

  • Hossein Heydari,
  • Hossein Peyman,
  • Hamideh Roshanfekr

DOI
https://doi.org/10.22093/wwj.2022.320592.3213
Journal volume & issue
Vol. 33, no. 3
pp. 1 – 14

Abstract

Read online

One of the most widely used polymers in the treatment and absorption of pollutants is polyethylene terephthalate, which optimizes their consumption and protects the environment by purifying water sources. The problem with this polymer is the lack of a functional group on the surface to bind the nanoparticles. Therefore, in this study, we first functionalized the polymer with the carboxylic group by chemical synthesis, then we synthesized silver nanoparticles on them by ultrasonic method. Optimal nanoparticle synthesis conditions were obtained (pH=9 and concentration 0.2 M). Under these conditions, the average particle size was 64 nm. In the second part, modified polymer was used to remove Methyl orange dye. Optimal parameters for removal were investigated (pH=9, temperature of 35 °C and ratio of dye concentration to adsorbent of 5 μM/0.1 g). The highest percentage of paint removal under optimal conditions was 92% after 120 minutes. The antibacterial effect of PET-AgNPs polymer was observed on two types of bacteria, Staphylococcus aureus and Escherichia coli, gram-positive and gram-negative. In the second part, the gold electrode was modified with a combination of PET-AgNPs polymer and carbon nanotubes and was used to detect methyl orange dye. The linear range was 5×10-6 to 2×10-8 M and the detection limit was 7.6×10-9 M. Parameters affecting removal and isotherm and removal kinetics were investigated. The functionalized and modified polymer is well able to measure and remove the contaminant dye and, in addition, it has an antibacterial effect.

Keywords