Plant Phenomics (Jan 2024)

Cucumber Seedling Segmentation Network Based on a Multiview Geometric Graph Encoder from 3D Point Clouds

  • Yonglong Zhang,
  • Yaling Xie,
  • Jialuo Zhou,
  • Xiangying Xu,
  • Minmin Miao

DOI
https://doi.org/10.34133/plantphenomics.0254
Journal volume & issue
Vol. 6

Abstract

Read online

Plant phenotyping plays a pivotal role in observing and comprehending the growth and development of plants. In phenotyping, plant organ segmentation based on 3D point clouds has garnered increasing attention in recent years. However, using only the geometric relationship features of Euclidean space still cannot accurately segment and measure plants. To this end, we mine more geometric features and propose a segmentation network based on a multiview geometric graph encoder, called SN-MGGE. First, we construct a point cloud acquisition platform to obtain the cucumber seedling point cloud dataset, and employ CloudCompare software to annotate the point cloud data. The GGE module is then designed to generate the point features, including the geometric relationships and geometric shape structure, via a graph encoder over the Euclidean and hyperbolic spaces. Finally, the semantic segmentation results are obtained via a downsampling operation and multilayer perceptron. Extensive experiments on a cucumber seedling dataset clearly show that our proposed SN-MGGE network outperforms several mainstream segmentation networks (e.g., PointNet++, AGConv, and PointMLP), achieving mIoU and OA values of 94.90% and 97.43%, respectively. On the basis of the segmentation results, 4 phenotypic parameters (i.e., plant height, leaf length, leaf width, and leaf area) are extracted through the K-means clustering method; these parameters are very close to the ground truth, and the R2 values reach 0.98, 0.96, 0.97, and 0.97, respectively. Furthermore, an ablation study and a generalization experiment also show that the SN-MGGE network is robust and extensive.