Trauma Surgery & Acute Care Open (Mar 2022)
Indices of complement activation and coagulation changes in trauma patients
Abstract
Objectives Early complementopathy and coagulopathy are shown often after trauma. However, the prevalence of any interplay between complement cascade (ComC) and coagulation cascade (CoaC) after trauma remains unclear. This study intended to explore whether complement-coagulation crosstalk exists, which may provide a reliable guide to clinical implications in trauma patients.Methods This single-center cohort study of trauma patients enrolled 100 patients along with 20 healthy volunteers. Blood samples from patients were collected at admission, 45, 90, 135 minutes, and 18 hours after admission. Demographic characteristics were recorded, blood levels of ComC and CoaC factors, and inflammatory cytokines were measured by ELISA, clot-based assays, or luminex multiplex assay, and partial thromboplastin (PT) and partial thromboplastin time (PTT) were assessed using a Behring blood coagulation system.Results Compared with the healthy controls, plasma levels of complement factors (C5b-9 and Bb) and 11 tested inflammatory cytokines increased in moderately and severely injured patients as early as 45 minutes after admission and sustained higher levels up to 18 hours after admission. C5b-9 correlated positively to patients’ hospital stay. In parallel, the consumption of coagulation factors I, II, X, and XIII was shown throughout the first 18 hours after admission in moderately and severely injured patients, whereas PT, PTT, D-dimer, factor VII, and factor VIII values significantly increased from the admission to 135 minutes in moderately and severely injured patients. Along with an inverse correlation between plasma Bb, factors I and II, a positive correlation between C5b-9, Bb, D-dimer, PT, and PTT was evident.Conclusions This study demonstrates trauma-induced early activation of plasma cascades including ComC, CoaC, and fibrinolytic cascade, and their correlation between plasma cascades in severe trauma patients. Our study suggests that the simultaneous modulation of plasma cascades might benefit clinical outcomes for trauma patients.Level of evidence Prospective study, level III.