International Journal of Naval Architecture and Ocean Engineering (Jan 2019)

Numerical and experimental study on the impact between a free falling wedge and water

  • Chuanrui Dong,
  • Shili Sun,
  • Hexing Song,
  • Qiang Wang

Journal volume & issue
Vol. 11, no. 1
pp. 233 – 243

Abstract

Read online

In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated. Keywords: Impact, Boundary element method, Fully nonlinear boundary conditions, Experimental study