International Journal of Plant Based Pharmaceuticals (Nov 2024)
Ameliorative effect of zingerone on cadmium-induced nephrotoxicity in adult wistar rats
Abstract
Exposure to heavy metals like cadmium has been reported to cause severe kidney damage through oxidative stress and inflammation. Zingerone is a bioactive compound present in ginger, it contains significant anti-oxidative and anti-inflammatory properties. This study aims to investigate the anti-oxidative and therapeutic role of zingerone on cadmium-induced nephrotoxicity. Thirty (30) adult male rats were divided into 6 groups (A-F) of 5 rats each (n = 5) randomly [A: normal control (normal saline), B: cadmium-exposed (5 mg/kg of cadmium only), C: zingerone-alone, D-F: 5 mg/kg of cadmium + 50 mg/kg, 100mg/kg, 200 mg/kg of zingerone, respectively]. Nephrotoxicity was induced by oral administration of cadmium chloride (CdCl₂), followed by zingerone treatment orally. Renal function markers (serum creatinine and urea level), oxidative stress markers (superoxide dismutases, catalase, malondialdehyde), and histopathological investigations of the kidney were assessed to evaluate the effects. Cadmium administration resulted in significant renal dysfunction, characterized by elevated serum creatinine, urea, and kidney malondialdehyde levels, along with reduced antioxidant enzyme activities (superoxide dismutase and catalase). Histopathological evaluation showed extensive kidney damage characterized by renal tubular damage, necrosis, and inflammation. Zingerone treatment significantly ameliorated these alterations, restoring renal function markers, reducing oxidative stress, and improving the histological architecture of the kidney. These findings suggest that zingerone exerts an anti-oxidative and therapeutic effect against cadmium-induced nephrotoxicity. According to these findings, zingerone shows potential as a therapeutic approach for kidney impairment caused by exposure to heavy metals.
Keywords