Journal of Lipid Research (Dec 1992)
Sphingomyelinase treatment of low density lipoprotein and cultured cells results in enhanced processing of LDL which can be modulated by sphingomyelin.
Abstract
The addition of neutral sphingomyelinase from S. aureus to the medium of rat intestinal epithelial cell cultures (IEC-6) containing added human low density lipoprotein (LDL) resulted in two- to fivefold increases in LDL uptake and degradation. This overall effect was shown to be the combined result of sphingomyelinase activity on the composition of the LDL particle and a separate action directly on the cells when native LDL was incubated with sphingomyelinase from S. aureus followed by removal of the sphingomyelinase. Analysis of sphingomyelinase-treated LDL showed that > 95% of the sphingomyelin (SM) was hydrolyzed, but no changes were observed in all the other components of the LDL particle. This modified LDL particle (SM(-)LDL) was also bound and degraded at higher rates than control LDL in a variety of cell lines, e.g., HepG2, GM-43, and CHO-K1 cells. No evidence of increased aggregation of SM(-)LDL could be observed. The increased processing of SM(-)LDL was due to enhanced affinity to LDL receptors and not to an increase in LDL receptor number. When sphingomyelinase from S. aureus was added to the medium of IEC-6 or GM-43 cells, which were processing SM(-)LDL, further increases in SM(-)LDL processing were observed, which were primarily due to greatly enhanced cellular degradation of SM(-)LDL, with little change in receptor binding and cell association. Since there was little sphingomyelin remaining in SM(-)LDL, it was assumed that the action of sphingomyelinase on the cells resulted in the enhanced degradation. In support of this concept, previous addition of sphingomyelin to cells growing in lipoprotein-deficient medium followed by addition of SM(-)LDL greatly inhibited the degradation of the apolipoprotein of SM(-)LDL. On the other hand, addition of sphingomyelin concomitantly with SM(-)LDL did not inhibit degradation. These results are interpreted to indicate that there may be two pathways for cellular processing of sphingomyelin, one of which may be a determinant in the lysosomal processing of the apolipoprotein of LDL. In support of this concept, addition of desipramine, an inhibitor of lysosomal sphingomyelinase, to IEC-6 cells in culture greatly inhibited the degradation of 125I-labeled LDL without affecting the receptor binding and cell association. Overall, these results suggest that sphingomyelin may play a modulatory role in cellular cholesterol homeostasis by regulating uptake of LDL as well as LDL processing.