Critical Care (Oct 2017)
Association between kidney intracapsular pressure and ultrasound elastography
Abstract
Abstract Background Kidney congestion is a common pathophysiologic pathway of acute kidney injury (AKI) in sepsis and heart failure. There is no noninvasive tool to measure kidney intracapsular pressure (KIP) directly. Methods We evaluated the correlation of KIP with kidney elasticity measured by ultrasound surface wave elastography (USWE). We directly measured transcatheter KIP in three pigs at baseline and after bolus infusion of normal saline, norepinephrine, vasopressin, dopamine, and fenoldopam; infiltration of 2-L peritoneal dialysis solution in the intra-abdominal space; and venous, arterial, and ureteral clamping. KIP was compared with USWE wave speed. Results Only intra-abdominal installation of peritoneal dialysis fluid was associated with significant change in KIP (mean (95% CI) increase, 3.7 (3.2–4.2)] mmHg; P < .001). Although intraperitoneal pressure and KIP did not differ under any experimental condition, bladder pressure was consistently and significantly greater than KIP under all circumstances (mean (95% CI) bladder pressure vs. KIP, 3.8 (2.9–4.) mmHg; P < .001). USWE wave speed significantly correlated with KIP (adjusted coefficient of determination, 0.71; P < .001). Estimate (95% CI) USWE speed for KIP prediction stayed significant after adjustment for KIP hypertension (−0.8 (− 1.4 to − 0.2) m/s; P = .008) whereas systolic and diastolic blood pressures were not significant predictors of KIP. Conclusions In a pilot study of the swine model, we found ultrasound surface wave elastography speed is significantly correlated with transcatheter measurement of kidney intracapsular and intra-abdominal pressures, while bladder pressure overestimated kidney intracapsular pressure.
Keywords