Journal of High Energy Physics (Oct 2020)
BTZ one-loop determinants via the Selberg zeta function for general spin
Abstract
Abstract We relate the heat kernel and quasinormal mode methods of computing the 1-loop partition function of arbitrary spin fields on a rotating (Euclidean) BTZ background using the Selberg zeta function associated with ℍ3/ℤ, extending ( arXiv:1811.08433 ) [1]. Previously, Perry and Williams [2] showed for a scalar field that the zeros of the Selberg zeta function coincide with the poles of the associated scattering operator upon a relabeling of integers. We extend the integer relabeling to the case of general spin, and discuss its relationship to the removal of non-square-integrable Euclidean zero modes.
Keywords