Drones (Sep 2024)
Hovering of Bi-Directional Motor Driven Flapping Wing Micro Aerial Vehicle Based on Deep Reinforcement Learning
Abstract
Inspired by hummingbirds and certain insects, flapping wing micro aerial vehicles (FWMAVs) exhibit potential energy efficiency and maneuverability advantages. Among them, the bi-directional motor-driven tailless FWMAV with simple structure prevails in research, but it requires active pose control for hovering. In this paper, we employ deep reinforcement learning to train a low-level hovering strategy that directly maps the drone’s state to motor voltage outputs. To our knowledge, other FWMAVs in both reality and simulations still rely on classical proportional-derivative controllers for pose control. Our learning-based approach enhances strategy robustness through domain randomization, eliminating the need for manually fine-tuning gain parameters. The effectiveness of the strategy is validated in a high-fidelity simulation environment, showing that for an FWMAV with a wingspan of approximately 200 mm, the center of mass is maintained within a 20 mm radius during hovering. Furthermore, the strategy is utilized to demonstrate point-to-point flight, trajectory tracking, and controlled flight of multiple drones.
Keywords