Phycology (Feb 2024)
Reciprocal Effects of Metal Mixtures on Phytoplankton
Abstract
Several types of contaminants are anthropogenically introduced into natural aquatic ecosystems and interact with other chemicals and/or with living organisms. Although metal toxicity alone has been relatively well studied, the toxic metal ion effects in the mixture have been thoroughly studied only during the last decades. This review focuses on the published reciprocal effects of different metals on different species of algae, together with describing their toxic effects on studied parameters. Phytoplankton as a bioindicator can help to estimate the reciprocal metal risk factor. Many methodologies have been developed and explored, such as the biotic ligand model (BLM), concentration addition (CA), independent action (IA), sensitivity distribution of EC50 species sensitivity distribution (SSD curves), and others, to study reciprocal metal toxicity and provide promising results, which are briefly mentioned too. From our review, we can commonly conclude the following: Zn acted antagonistically with most heavy metals (Al, Cu, Cd, and Ni). The Cu interaction with Cd, Fe, and Pb was mostly antagonistic. Cd showed synergistic behaviour with Hg, Cu, Zn, and Pb and antagonistic behaviour with Co and Fe in many cases. Methods and techniques need to be developed and optimised to determine reciprocal metal toxicity so that the ecotoxicological predictions made by using phytoplankton can be more accurate and related to real-time toxic metals risks to the aquatic ecosystem. This is the main objective of ecotoxicological tests for risk assessment. Understanding how metals enter algal cells and organelles can help to solve this challenge and was one of the main parts of the review.
Keywords