Nature Communications (Mar 2021)

Removing leakage-induced correlated errors in superconducting quantum error correction

  • M. McEwen,
  • D. Kafri,
  • Z. Chen,
  • J. Atalaya,
  • K. J. Satzinger,
  • C. Quintana,
  • P. V. Klimov,
  • D. Sank,
  • C. Gidney,
  • A. G. Fowler,
  • F. Arute,
  • K. Arya,
  • B. Buckley,
  • B. Burkett,
  • N. Bushnell,
  • B. Chiaro,
  • R. Collins,
  • S. Demura,
  • A. Dunsworth,
  • C. Erickson,
  • B. Foxen,
  • M. Giustina,
  • T. Huang,
  • S. Hong,
  • E. Jeffrey,
  • S. Kim,
  • K. Kechedzhi,
  • F. Kostritsa,
  • P. Laptev,
  • A. Megrant,
  • X. Mi,
  • J. Mutus,
  • O. Naaman,
  • M. Neeley,
  • C. Neill,
  • M. Niu,
  • A. Paler,
  • N. Redd,
  • P. Roushan,
  • T. C. White,
  • J. Yao,
  • P. Yeh,
  • A. Zalcman,
  • Yu Chen,
  • V. N. Smelyanskiy,
  • John M. Martinis,
  • H. Neven,
  • J. Kelly,
  • A. N. Korotkov,
  • A. G. Petukhov,
  • R. Barends

DOI
https://doi.org/10.1038/s41467-021-21982-y
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 7

Abstract

Read online

Correlated errors coming from leakage out of the computational subspace are an obstacle to fault-tolerant superconducting circuits. Here, the authors use a multi-level reset protocol to improve the performances of a bit-flip error correcting code by reducing the magnitude of correlations.