Electronic Journal of Biotechnology (Jan 2017)

Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support

  • Anfeng Xiao,
  • Qiong Xiao,
  • Yan Lin,
  • Hui Ni,
  • Yanbing Zhu,
  • Huinong Cai

DOI
https://doi.org/10.1016/j.ejbt.2016.10.007
Journal volume & issue
Vol. 25, no. C
pp. 13 – 20

Abstract

Read online

Background: A simple and efficient strategy for agarase immobilization was developed with carboxyl-functionalized magnetic nanoparticles (CMNPs) as support. The CMNPs and immobilized agarase (agarase-CMNPs) were characterized by transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and zeta-potential analysis. The hydrolyzed products were separated and detected by ESI-TOF-MS. Results: The agarase-CMNPs exhibited a regular spherical shape with a mean diameter of 12 nm, whereas their average size in the aqueous solution was 43.7 nm as measured by dynamic light scattering. These results indicated that agarase-CMNPs had water swelling properties. Saturation magnetizations were 44 and 29 emu/g for the carriers and agarase-CMNPs, respectively. Thus, the particles had superparamagnetic characteristics, and agarase was successfully immobilized onto the supports. Agaro-oligosaccharides were prepared with agar as substrate using agarase-CMNPs as biocatalyst. The catalytic activity of agarase-CMNPs was unchanged after six reuses. The ESI-TOF mass spectrogram showed that the major products hydrolyzed by agarase-CMNPs after six recycle uses were neoagarotetraose, neoagarohexaose, and neoagarooctaose. Meanwhile, the end-products after 90 min of enzymatic treatment by agarase-CMNPs were neoagarobiose and neoagarotetraose. Conclusions: The enhanced agarase properties upon immobilization suggested that CMNPs can be effective carriers for agarase immobilization. Agarase-CMNPs can be remarkably used in developing systems for repeated batch production of agar-derived oligosaccharides.

Keywords